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LETTER TO THE EDITOR 

A reaction-flow lattice Boltzmann model 

R D Kingdon and P Schofieldt 
Theoretical Studies Department, AEA Industrial Technology, B424.4 Hanvell Laboratory, 
Didcot, OX11 ORA, UK 

Received 27 March 1992 

Abstract. We describe a development of a lattice Boltzmann fluid flow model enabling the 
simulation of the reaction and flow of low-concentration species in two dimensions. In 
principle any number ofspecies and reactions can be implemented in this model. In making 
this development we derive an expression for the solution of the diffusion equation using 
the lattice Baltzmann approach. 

A previous paper [l] describes a lattice Boltzmann (LB) model capable of simulating 
single-species Navier-Stokes flow in two dimensions. In this letter we describe a 
development of this model capable of simulating the reaction and flow of species in 
low concentration. In principle any number of species and reactions can be implemented 
in this model. In constructing this model we make the following assumptions (none 
of which are fundamental to the LB approach itself): 

( a )  Flow is modelled in two dimensions. 
(b) The reactants are in sufficiently low concentration that they do not influence 

(c) The reactants are in sufficiently low concentration that there are no interface 

( d )  There are no heat effects (e.g. exothermicity). 
(e)  There are no mass effects (e.g. buoyancy). 
The main problem to be considered is the inclusion of the effect of the diffusion 

of species with respect to the flow. First we derive an expression which allows the 
direct prescription of a diffusion coefficient while maintaining full Galiliean invariance 
and isotropy. It is then relatively straightforward to include reaction. 

Assumptions (b) and (c) above mean that one can simulate pure advection (where 
by 'pure advection' we mean the transport of species by means of fluid flow alone) 
simply by modelling a single-species flow and on each timestep partitioning a nodal 

density. If we denote a species concentration and the flow density in direction e, ( i  = 0 
(stationary particles), 1,2, .  . . , 6 )  at node r on the two-dimensional hexagonal grid at 
time t as g,(r ,  1 )  and J(r ,  t )  respectively, pure advection requires 

the flow. 

effects (e.g. surface tension). 

species c0iiieii:iatioii g ( i ,  :) be:ween :he !:::ice vec;o:s in p:apo;",ion :o :he flaw 

where the nodal flow density is given by 

d c  f ) = M r ,  0. 
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The advection step is completed by moving the concentrations gj(r, 1 )  in directions 
c, and summing at each node to  obtain the new nodal concentrations: 

gi( r, t )  = gi( r - e,, I - 1) 

g(r ,  0 = E  g h ,  0.  (3) 

diR.usion .W.iih iespeci io the fio.w, 7"ire ana;ysis is siiiiiiaf io ihai used io derive ihe Ln 

i 

In the following we will extend this model by including expressions for molecular 

flow model [l]; we use primes when referring to equation numbers in that paper. 
The aim of this analysis is t o  be able to mimic the diffusion equation: 

_- Dg- DV2g 
Dt (4) 

where D/Dt is the substantive derivative and D is the diffusion coefficient. We proceed 
by writing the lattice Bolzmann equation for species concentration (1') 

gi(r, t + 1 )  = gi(r- ci, 1 )  + A (  ( 5 )  

where A, is the flow collision function. Taking the Taylor expansion to first order, we 
obtain ( 5 ' )  

-= "' (u-cj)Vg,+Ai 
Dt 

where U is the flow velocity (3') 

Noting that (6') 

E A t = O  

we sum equation (6) over i to obtain 

As before, we write (13') 

g, = Ci + sgi 

where is the pure advective term (equation (1)). 

- gl; g = -  
P 

and Sgi is the diffusion term which equilibrates variation in concentration. In order to 
mimic the diffusion equation (4), we require Sgi to have the form 

Sg, = hcpV"g (12) 

where A needs to be determined. 
The right-hand-side of equation (9) can be written 

E (u-c#)vgi = E  V(u-c,)g, -E g,V(u-c,). 
i 
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Since the derivatives of e, are zero, and assuming incompressibility (79,  the final 
term in (13) is zero. Using equation (IO) to  substitute gi from the remaining term on 
the right-hand-side, and using equations (11)  and (7), we obtain 

1 V(u -q)g,  = 1 V(u- CJ(& + Sg,) 

= 1 V(u - e,) -+E gf; V(U - c;)Sg, 
P i  

= 1 V( U - c,)Sg,. (14) 
i 

Substituting Sg, using equation (12), 

xV(u-c i )g ;=  A X  VBUecPV~'g-A~VPc~cSV"g.  (15) 
i 

Over the summation, expressions in odd powers of c, will be zero, while (22') 

1 c:ca =3S"@. (16) 

Therefore 

V( U - Ci)gi = -3AV*g. (17) 

We can now substitute the right-hand-side of equation (9) ,  giving 

_-  Dg- -3AV2g 
Df 

and the diffusion equation (4) is satisfied by putting 

D = -3A. 

The steps in the computation are therefore: 
( a )  Calculate nodal concentrations using data from the previous timestep (equation 

(b) Calculate the gradients (cf (43')): 
(3)). 

(e) Finally, calculate the change in concentration distribution due to advection 
and diffusion (equations (IO), ( i i j ,  ( i i j ,  (isjj: 

In principle, any number of species can be simulated using the model described 
above. We now consider the reaction of multiple species, taking as an example the 
reaction A+ B + C, where A, B and C represent chemical species. Using square brackets 
[ ] to denote the concentration of species, the reaction rate for each species is given by 
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where k is the rate constant. Recalling the definition of a derivative, 

it can be seen that for small timestep Sf one can express the evolution of each species 
concentration in the above example as follows: 

[A](t+ St) = [A](t) - k[A](f)[B](t)8t 

[Bl(f+ S f )  =[Bl(t) - k [ A l ( ~ ) [ B l ( f ) ~ ~  (24) 

[C](f+Sf) = [C](f)+ k[A](f)[B](f)Sf. 

In the LB model Sf is the unit timestep, and therefore the change in species 
concentration at each lattice node on each timestep is given by 

r+l)=[Al(r ,  f)-k[Al(r, t)[Bl(r, 1) 

[Cl(r, r+ l )  =[Cl(r, t)+k[Al(r, f)[Bl(r, 1). 

[Bl(r, r+l)=[Bl(r ,  t)-k[Al(r, f)[Bl(r, f )  ( 2 5 )  

In principle, this approach can be generalized to any number of reactions, and 

computed reaction rate is independent of timestep size. One is free to specify the LB 

timestep size, which is related to physical timescales through the rate constant k. 
We have derived expressions which enable the inclusion in a lattice Boltzmann 

flow model of the reaction and flow of species in low concentration. In doing so we 
have obtained an expression for the solution of the diffusion equation using the lattice 
Boltzmann approach. 

The work described in this letter was undertaken as part of the United Kingdom 
Department of the Environment Air Quality Research Programme. 

each reac!ian CZ!! he of any order. !n practice one wou!d need to ensure that the 
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